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1 Introduction

This document shows an example of semi-analytical tuning of the parameters in a proportional,
derivative, integral (PID) control. This particular process consists of a cylindrical tank into and
out of which liquid is continuously pumped by two pumps. Some of the incoming liquid also boils
off inside the tank and is expelled through a vent. The process demands that the liquid level within
the tank be maintained at the 50±10% mark. The user sets the flow rate of the filling pump, while
the PID controls the flow rate of the emptying pump, thereby maintaining the level.

2 Process Constraints

The following constraints limit how the PID may be tuned:

1. The fill pump may operate anywhere in the range of 2-18 gallons per minute (GPM), but is
expected to run at nearly full capacity most of the time.

2. The controls must maintain the 50% level regardless of fill rate.

3. The emptying pump has the same capacity as the fill pump.

4. The controls must bring the tank to the 50% level even if it starts empty or full.

5. The volume of liquid boiled off inside the tank is always equal to 10% of the incoming liquid
volume.

3 Physical Picture

Figure 1 shows the physical layout of the system. The tank is cylindrical with a horizontal axis.
Let’s assume the tank capacity is 300 G (gallons). It’s radius r is 18” (inches) and its length, l, is
68”. For this analysis, it is not strictly necessary to attach numbers to the tank length or radius,
or even the flow rates. But numbers add some realism and give a better intuition about what is
actually occurring in the controls. Again, both the fill pump, P1, and the emptying pump, P2, can
pump at any rate in the range of 2-18 GPM.

Now, 10% of the incoming liquid is boiled off and vented, and this effectively de-rates the filling
capacity of pump P1. That is, it can pump 18 GPM, but only 90% of that actually fills the tank
with liquid. So the maximum fill rate max(Rf ) = 0.9 × 18 = 16.2 GPM. Boil-off doesn’t affect
pump P2 so its maximum emptying rate is unchanged, max(Re) = 18 GPM.
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Figure 1: Physical schematic of process.

4 Level/Volume Relation

In this example it is possible, without too much trouble, to fully describe the process with math-
ematical equations. If the general relations between flow rates and tank level can be determined,
then the PID can be tuned without much guesswork. The flow rates are intimately tied to the
volume of liquid in the tank. So the next step is to link the volume of liquid in the tank with its
level. The details of the derivation are withheld, but it can be shown that the volume of liquid in
the tank is given by

V = l

[
πr2

2
+ (L− r)

√
r2 − (L− r)2 + r2 arcsin

(
L− r

r

)]
(1)

where L is the liquid level in the tank, as shown in Fig. 1, and l is the tank length. As a sanity
check we can test three simple cases: L = 0, L = r, L = 2r, which signify the tank is empty, half
full, and totally full, respectively. If L = 0, then we find V = 0. If L = r, we find V = lπr2/2 = 150
G. If L = 2r, we find V = 300 G. The three test cases all behave as expected and thus indicate
that the equation is correct. Unfortunately, it’s also a nonlinear equation. Many may know that
trying to tune any nonlinear system is not trivial, and the PID level control will be no exception.

To better describe the problem with nonlinearity, consider the rate at which the level in the tank
rises (in derivative notation: dL/dRf ) when the tank begins at empty and P1 turns on. The level
will rise very quickly, or dL/dRf will be large, because there is very little cross-sectional area to fill
at the bottom of the tank. Then, as the level approaches 50%, the level will rise much more slowly,
or dL/dRf gets small. Why? Because the pump rate has not changed but the cross-sectional area
of the tank is much larger when the level is near 50%. Finally, as the level approaches 100%, the
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rate of change of the level will increase again for a fixed pump rate. The fact that the level does
not change proportionally to the fill rate means we’re going to run into problems trying to use a
proportional -derivative-integral type control.

5 Simplifications

The controls can be designed to avoid the nonlinear problem, in a process known quite generally as
linearization. First, we can avoid the use of the PID altogether except when L is near 50%. Let’s
assume the PID will only control P2 when L = 50± 10%. In this case the quantity (L− r) is going
to be small compared to r since L will approximately equal r. Therefore, two approximations can
be made in Equation 1(b).

r2 arcsin

(
L− r

r

)
≈ r(L− r) (2a)

(L− r)
√
r2 − (L− r)2 ≈ r(L− r) (2b)

Now the relation between the liquid level and the volume of liquid becomes

V ≈ l
πr2

2
+ 2lr(L− r) (3)

This approximation is now linear in L, which makes it much more amenable to PID control. It can
be tested for accuracy within the range of 50±10%. When the level sensor reads 60%, L = 21.6 in,
the approximation finds the volume of liquid in the tank to be 187.97 G. The exact equation finds
it to be 187.71 G. Similarly, when the level sensor reads 40%, L = 14.4 in, the approximation finds
the volume of liquid in the tank to be 111.67 G, and the exact equation finds it 111.92 G. Both
equations find the exact same volume when the level sensor reads 50%. So the approximation is
very accurate in the range of interest and we can trust the linearized equation for the purpose of
level control. Quick note, L is expressed in inches. Typically we will rather use it as percent full.
To get L in units of “percent full”, multiply it by 100/(2r).

The Process Constraints demanded that level control be exercised all the way from empty to full,
whereas the PID only takes control in the 50 ± 10% range. To address this, the controls can be
designed such that when the level is in a different range (below 40% or above 60%), a simpler
control scheme is employed. Recall also that the user sets the desired fill rate, Rd. Note that this
is not the actual fill rate, Rf . It’s just what the user wants. For this example, we will thus use
a simple scheme where the controls temporarily slow either the filling or emptying rate to bring
the liquid level to 40% or 60%. For example, when L < 40% we set the emptying rate to 75% of
the user-desired fill-rate, or Re = 0.75Rd. Then, we set the filling rate equal to the user-desired
fill-rate, or Rf = Rd. Since the emptying is occurring more slowly than the filling, the tank level
will eventually rise to 40%, where the PID can take over control. Similarly, if L > 60%, then we
set Rf = 0.75Rd and Re = Rd. Since the emptying is occurring faster than the filling, the tank
level will eventually lower to 60% where the PID will take over.
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There is another advantage of this control arrangement. It keeps the pumps running continuously
and always near the speed the user desires. This is likely to improve efficiency and pump longevity.

6 PID Tuning

Arguably the most difficult part of this control problem is tuning the PID. Below, equation 4
describes the PID control method. Rigorously solving a PID equation obviously involves calculus,
which very often becomes troublesome in systems with complex equations governing the physical
process. However, a simple computer program can be implemented that effectively models the
calculus without performing actual derivatives or integrals.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ +Kd

d

dt
e(t) +B (4)

First some definitions are required. In the PID equation, the term u(t) is called the control variable
or controller output. In our example, it is the signal sent to P2 to control its speed. Note, the
variable we want to control (in this case the level in the tank, L) is sometimes called the process
variable. The term e(t) is the error signal. It is defined as the difference in the level set point and
the actual liquid level in the tank, or

e(t) = Lset − L (5)

where Lset is the desired liquid level in the tank, set by the user in the control program. Sometimes
this equivalently denoted

e(t) = SP − PV (6)

or error is equal to the set point minus the process variable. The remaining terms of the PID
equation are Kp, Ki, Kd, and B. These are the proportional gain, the integral gain, the derivative
gain and the bias. These are numbers we can tune to make the control loop do what it’s supposed
to. It’s best to start with the simplest case and then add complexity. Therefore this tutorial begins
with proportional and control alone. It is assumed that the bias can also be added since its effect
on the equation is simple.

6.1 Proportional Only

With proportional-only (P-only) control, the parameters Ki and Kd are set to zero. Thus they
play no part in the actual process. In this case the control variable is totally controlled by the error
signal and the proportional gain. The bias is used to make the output nonzero when e(t) = 0. In
other words, when there is no error signal we still want a non-zero output to P2. Mathematically,

u(t) = Kpe(t) +B. (7)

When the set point Lset and measured level L are equal (or L = Lset), then the error signal is
zero and the output equals the bias only, or u(t) = B. This sounds like what was desired. In the
original specifications, P2 should be on pretty much all the time, it’s just balanced with P1 so that
the level stays at 50%. Let’s say that u(t) will be some number between 0-100, representing the
percentage of maximum possible speed that P2 can run. For example, if u(t) = 25 then P2 will
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run at 25% of its maximum capacity.

It’s also important to mention that P2 should not regularly shut off in normal operation, even if the
liquid level gets below the set point. Recall from the Simplifications section that the PID control
will never turn on until the liquid level is somewhere between 40-60%. Also, if the level has just
reached 40% then P2 has been running at 75% capacity; this is slower than P1 so that P1 can fill
the tank to 50%. This means two things. First, the worst case error signal will only ever reach a
numerical value of ±10, or emax,min = Lset − L = ±10. Second, in order for the PID to smoothly
take control of the pumps when the liquid level reaches 40% it should also make P2 run at 75%
when the liquid level is at or near 40%.

From this information it’s now possible to solve for Kp and B. Since there are two unknowns, two
equations are required. These equations represent the worst case error conditions, when the set
point is at 50% and the liquid level is at 40% or 60%, respectively,

u(t) = Kp(−10) +B = 75 (8a)

u(t) = Kp(+10) +B = 100 (8b)

The solution of these two equations works out to

Kp = 1.25 (9a)

B = 87.5 (9b)

The entire P-only control loop is now defined.

Matlab (or any programming language) can now be used to show how this tuning performs. Fig-
ure 2 shows these simulation results when the liquid level is set to begin at 60% full. The program
actually calculates the level in this condition at 57.8% because the program is using the approxi-
mate relation between volume and liquid level, Eq. 3. By the way, the Matlab file used to calculate
all the results in this white paper is given at the back. Matlab also has built-in PID simulators if
you purchase the Control System Toolbox.

With the Kp and B settings just defined the result is unexpected. The tank level settles at 52% in-
stead of 50%. Why? This is a phenomonenon called droop. It is a result of the fact that the system
was not originally tuned for zero error. Consider the zero error situation where u(t) = B = 87.5.
If the feed pump P1 is running at 18 GPM, and 10% of that is lost to evaporation, the effec-
tive feed rate is 16.2 GPM. But u(t) = 87.5, which translates to an actual pump rate (P2) of
0.875 × 18 = 15.75 GPM. So when the error signal is zero, the pumping rates are NOT matched
and the tank will begin to fill past 50%. The tank level has to change at zero error signal! The
pump rates match each other only when there is a small error signal. In this case the rates equalize
at 16.2 GPM obviously, since that’s the feed pump rate. This translates to a tank level of 52%.
Notice in this case the output is u(t) = 1.25 × (52 − 50) + 87.5 = 90. And thus P2 pumps at
0.9 × 18 = 16.2 GPM.

You may ask, why not just set the bias to B = 90 instead of B = 87.5? This would effectively
tune the controls at zero error so that the pumps equalize when the tank level is at 50% as was
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the original intention. In fact, sometimes this procedure is used to remove droop effects. It doesn’t
work in this situation because it requires pump P2 to run beyond its maximum capacity. Consider
the case where the tank level is at 60%, then the error is 10. If the bias was increased, then
u(t) = 12.5 + 90 = 102.5. This means the controls are calling for the pump to operate at 102.5%
of its capacity, which it obviously can’t do!
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Figure 2: Tank level and pumping rates over time using proportional-only control and starting at
60% full tank.

6.2 Proportional-Integral Control

Another way to fix droop is to add an integral control term. The way it works is as follows. Integral
gain adjusts the output signal u(t) according to accumulated error. How can we understand this?
Pretend that a counter increments every second when there is a positive error between the tank
level and its set point. And it decrements every second when there is a negative error. You operate
a control that adjusts the output based on the counter value. This is the same function as the
integral term.

A simple example helps illustrate. Assume the tank level has settled out at 52% as it does with
proportional-only control. Then we turn on a counter that starts incrementing or decrementing
every second. Since the error is positive the counter begins to increment. As the counter value gets
larger and larger, you add more and more output u(t) thus speeding up pump P2. Eventually this
brings the tank level to 50%. But that doesn’t mean your counter goes to zero too. It still has some
positive value that has accumulated over all the time there was error. Thus pump P2 continues to
run, and a bit too fast. The tank level thus dips below 50%, which finally causes the counter to
decrement. After some time the counter reaches zero but the tank level is now below 50%. The
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negative error over time causes the counter to reach larger and larger negative values, which slows
pump P2 and thus the tank level begins to rise again. The whole process repeats causing the tank
level to oscillate around the set point. Eventually it settles at the proper set point of 50%.

That’s the idea behind integral control. By tracking accumulated error we can remove effects like
droop. The price is that this causes the output to oscillate. It turns out that you can cause the
output to reach the set point quite fast, but it will oscillate widely. If it’s made to act more slowly,
the oscillations will be smaller. So, now the question is, how does one tune Ki to make the output
settle quickly but without massive oscillations? The quick answer is usually trial and error! But a
more intelligent approach is possible.

To make things simpler, start at the steady-state condition where the output has stabilized at 52%.
Next realize that the pumps are not terribly fast with respect to the tank volume, particularly
when they’re working in a near-balanced condition. For example, when the effective feed rate is
16.2 GPM and the emptying pump (P2) rate is 18 GPM (its maximum rate), then the tank can
only empty at 1.8 GPM. It can’t go any faster! Working through the numbers you can find it takes
at least 4 minutes to move the tank level from 52% to 50%. This provides a characteristic time
over which accumulated error can be estimated.

Now, going back to the equation, the output has to be u(t) = 90 when e(t) = 0 so that the
pumps equalize at 16.2 GPM. It’s reasonable to assume that the error decreases linearly from 2 to
0 over about 4 minutes as the pump P2 is increased in speed by the integration control. This is
illustrated in Fig. 3. Assuming the integral control was turned on at time zero, the accumulated
error in 4 minutes is the area underneath the error signal. This is shown by the hatched region in
Fig. 3. In this case, the accumlated error after 4 minutes is 4 %-min. Accumulated error always
has units of “something” multiplied by time. This is why the integral gain has units of inverse time.

0 4 minutes

e(t)

integral control turns on

2

Figure 3: Error signal over time when the integral control is turned on at time zero to eliminate
steady-state droop. Hatched area defines accumulated error.

The simulation software actually steps through time by the second instead of by the minute, so it’s
necessary to express the accumulated error as %-sec. After this conversion the accumulated error
is 240 %-sec. These results are plugged back into the PI-control equation and evaluted at time
equals 4 min.

u(t) = Kpe(t) +Ki(240) +B = 90 (10)

Since the error signal e(t) is zero at 4 minutes, the proportional gain does nothing. The bias B is
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already established at 87.5. So 240Ki must equal 2.5 in order for the equation to be true. Using
this, we finally arrive at a value for the integral gain by solving

240Ki = 2.5, (11)

or Ki = 0.01 sec−1. It’s quite a lot smaller than the proportional gain! Still, it’s actually a bit
too large. We have assumed that the correction to the tank level would run as fast as it could.
This may not be such a good idea since at larger errors of ±10 the accumulated error could get
quite large, thus trying to force the pump P2 to run very fast or very slow. Recall the integral
gain obtained here assumed a pretty small error of only 2%. In order to allow for the fact that
accumulated error could get much larger, it’s necessary to downsize the integral gain. We know
the error can get up to 10%, which is 5 times larger than we assumed to calculate integral gain.
So let’s also assume accumulated error can get 5 times larger. Then the integral gain has to get 5
times smaller to avoid large oscillations. As a good estimate in tuning then, we set

Ki = 0.002 sec−1 (12)

The plots in Fig. 4 show the result of adding this integral term.
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Figure 4: Tank level and pumping rates over time using proportional-integral control (Ki = 0.002)
and starting at 60% full tank.

The plots show that the integral term in the PI control scheme did the trick. It has reduced the
droop to zero and the tank level has settled in about 60 minutes with only a small amount of
oscillation. It’s worthwhile to look at some other values of Ki to see the effect. The first example
is when Ki = 0.01 which was the initial guess based on only 2% error. This is shown in Fig. 5.
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In this case the output has been clamped so that the rate of P2 never exceeds 18 GPM. But it’s
obvious that the high Ki value is trying to force the output much higher. In this case the droop
is almost immediately removed, in that the tank level oscillates around the proper value of 50%.
And, it may not be terribly apparent, but the oscillations don’t last quite as long as in the case
of Ki = 0.002, but they are much larger. This is a less-optimal solution and even runs the risk of
causing the system to become unstable.
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Figure 5: Tank level and pumping rates over time using proporitional-integral control (Ki = 0.01)
and starting at 60% full tank.

In the last example integral gain is reduced to Ki = 0.0004, which is 5 times smaller than 0.002.
These results are shown in Fig. 6. In this case the oscillations are very small which amounts to
the system settling in only about 40-50 minutes. Further experimentation reveals that this integral
gain is about as good as it gets.

There is still another thing to check. How do these settings work when the liquid level starts at
40% instead of 60%? Figure 7 shows the system behavior when it starts in this condition with
Kp = 1.25, B = 87.5, and Ki = 0.0004. Because the system droop tends to push the tank level
above 50% the system responds by overshooting then going back down to 50%. So this setting isn’t
quite as optimal in this condition. In Fig. 8, the integral gain is increased back to Ki = 0.002. In
the end, we find that the original best-guess of Ki = 0.002 is probably best overall setting. It has
a little overshoot, but settles out quickly whether starting at 40% or 60% tank levels.
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Figure 6: Tank level and pumping rates over time using proportional-integral control (Ki = 0.0004)
and starting at 60% full tank.
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Figure 7: Tank level and pumping rates over time using proportional-integral control (Ki = 0.0004)
and starting at 40% full tank.
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Figure 8: Tank level and pumping rates over time using proportional-integral control (Ki = 0.002)
and starting at 40% full tank.

6.3 Proportional-Integral-Derivative Control

Finally, it’s possible to add derivative control. Often times the addition of derivative control is
not necessary. Our example application is one such case. And in some cases the derivative term
can actually cause instability because it’s pretty sensitive to system noise. The derivative term
can basically amplify a small error and turn it into a big one, that gets further amplified by the
derivative term! This might occur, for example, when the set point is suddenly changed by the
user. However, the derivative term can also buy some advantage causing the output to settle faster.
The derivative term can even aid stability in some cases.

In the case of our tank application, the derivative term does almost no good. But the reason is
somewhat subtle. Before trying to explain this in text, let’s first look at the results of adding
some derivative gain. Note that the derivative gain has to be negative in this application other-
wise it actually makes the settling time worse. In the first example, the derivative gain is set to
Kd = −1100 sec. The tank level starts at 40% and B = 87.5, Ki = 0.002, Kp = 1.25 as before. The
response is shown in Fig. 9. Note the time scale of the plots has been significantly reduced to show
how dramatically the settling time has improved. The derivative term seems to have helped a lot
by reducing the emptying rate of pump P2 to nearly zero, which obviously fills the tank quickly.
The system settles at a tank level of 50% in about 30 min with almost no oscillation.

Why not go to a greater gain? When Kd gets to about −1300, the system actually goes unstable.
Pump P2 periodically is maxed out and sharply drops and raises again over time, as shown in
Fig. 10. At the start, pump P2 also shust off completely for 3 full minutes, then immediately
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Figure 9: Tank level and pumping rates over time using PID control (Kd = −1100) and starting
at 40% full tank.
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Figure 10: Tank level and pumping rates over time using PID control (Kd = −1300) and starting
at 40% full tank.
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rockets to maximum! This is clearly not a well-tuned system.

If Kd = −1100 dramatically reduces settling time, why not use it? The problem arises when the
tank level starts at 60%. In this case the large derivative term tries to force pump P2 to run much
faster than its maximum rate. Figure 11 illustrates the idea showing how pump P2 rate becomes
clamped at 18 GPM. Perhaps this is acceptable in some cases, like this one, but in general it’s not
a good idea. Smooth and well-limited changes are often least difficult on the equipment and least
prone to instability problems. The only way to avoid clamping P2 at its max rate is to reduce the
derivative gain to Kd = −100, which has renders it almost unfunctional, as shown in Fig. 12.
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Figure 11: Tank level and pumping rates over time using PID control (Kd = −1100) and starting
at 60% full tank.

Finally, it’s worthwhile to verbally explain what the derivative term is doing. The derivative term
observes the change in error from one step to the next. Recall when studying the effect of integral
gain, we looked at how error accumulated with each time step. In this case we are looking at
how error changes from one step to the next. For example, if the error at step 1 (time = zero) is
e(t) = 10, and the error at step 150 (time = 2.5 minutes) is e(t) = 5, then the derivative term is
5/150=0.033 sec−1. In this example the error is reducing pretty quickly, so if we don’t slow down
the correction the output will overshoot the set point in a couple of minutes. To stop this, we can
decrease the pump P2 speed by 25%, for example. Mathematically we want to cause u(t) to be
reduced by 25.
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Figure 12: Tank level and pumping rates over time using PID control (Kd = −100) and starting
at 60% full tank.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ +Kd

d

dt
e(t) +B (13a)

u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ − 25 +B (13b)

In other words, Kd
d
dte(t) = −25. If d

dte(t) = 0.033, then

Kd = −758 sec−1. (14)

This value is quite close to what we found by experimentation. Again, this would be a decent
value to use for the derivative gain, if we could use it. But we can’t because it forces the output to
saturate when the tank level is above 50%.

7 Low Pump Rates

The original Process Constraints also indicated that the fill pump rate may be as low as 2 GPM,
instead of the 18 GPM we’ve been assuming. To be complete, the PID tuning should also remain
operable at low and intermediate fill rates. While this is not detailed, a single adjustment can make
this possible. The bias must be adjusted according to the user-defined fill rate with the relation

Badj =
Fact

Fmax
B (15)
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where the adjusted bias Badj is a version of the original bias B, scaled by the ratio of the actual
fill rate versus the maximum fill rate. For example, if the user specifies 2 GPM fill rate, then
Badj = 2/18 × B = 9.72. Then Badj is substituted in for B in all the equations. Without this
adjustment pump P2 behaves as though P1 is still running at 18 GPM. Since P1 is actually running
much more slowly, pump P2 runs dramatically too fast. The adjusted bias corrects this.

8 Conclusions

As can be seen, the tuning of a relatively simple PID control loop has to take into account many
parameters. However, when these are intelligently approached, the actual tuning is relatively
straightforward. In our example, the tuning only required a few assumptions about the tank, the
pumping rates, and the pumping rate limits.
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